SOURCE TEST REPORT

06-249

CONDUCTED AT

BP/ARCO Refinery 1801 E. Sepulveda Blvd. Carson, California 90749

PARTICULATE MATTER (PM), VOLATILE ORGANIC COMPOUND (VOC), SPECIATED HYDROCARBONS, AROMATIC HYDROCARBONS, AND SULFUR COMPOUNDS EMISSIONS FROM A COKE DRUM STEAM VENT

	TESTED:	August 2 & 8, 2006
	LAB DATA COMPLETED:	February 1, 2008
	Issued:	February 20, 2008
	REPORTED BY:	Carey Willoughby Air Quality Engineer II
REVIEWED BY:		
Michael Garibay Supervising Air Quality E	ngineer	

SOURCE TEST ENGINEERING

MONITORING AND ANALYSIS

Test No: <u>06-249</u> -2- Date: <u>8/2 & 8/2006</u>

SUMMARY

a.	Firm	BP/ARCO Refinery
b.	Site Location	1801 E. Sepulveda Blvd., Carson CA 90505
c.	Mailing Address	<u>1801 E. Sepulveda Blvd., Carson CA 90505</u>
d.	Unit Tested	Petroleum Coke Drums No. 2 & No. 3
e.	Requested by	Eugene Teszler, A.Q. Specialist; Planning, Rule Development & Area Sources (909) 396-2077
f.	Reason for Test Request	Rule Development Information
g.	Date of Test	<u>August 2 & 8, 2006</u>
h.	Source Test Performed by	M. Garibay, C. WilloughbyW. Stredwick, R. Lem
i.	Test Arrangements Made through	Joshua Lipscomb, (310) 816-8631Environmental Process Engineer
j.	Source Test Observed by	Joshua Lipscomb, (310) 816-8631 Eugene Teszler, (909) 396-2077
k.	Company ID. No.	800012

Test No: <u>06-249</u> -3- Date: <u>8/2 & 8/2006</u>

RESULTS

Table 1 SCAQMD Rules (Blowdown) Flow Rate 3.68 dscmm (130 dscfm) Process Rate 30,300 kg/hr (66,900 lb/hr)

Contaminant	Measured	Allowed	Applicable Rule
Particulate Matter (PM)			
Concentration (Total PM)	6,030 mg/dscm (2.63 gr/dscf)	450 mg/dscm (0.196 gr/dscf)	404(a)
Mass Rate (Solid PM)	1.13 kg/hr (2.49) lb/hr	7.04 kg/hr (15.5) lb/hr	405(a)
Sulfur Compounds as H ₂ S	7,710 ppm	500 ppm	407(a)(2)(A)

Table 2
Mass Emissions Per Single Drum Blow Down Event

Contaminant	Physical Description of Sample	Measured
Solid PM from SCAQMD Method 5.1	Solid Fine Material with Coke Dust Appearance	3.77 lb
Condensable Organic PM/VOC* from SCAQMD Method 5.1	Liquid Hydrocarbon	0.66 lb
Gaseous VOC as Hexane from Canister Following SCAQMD Method 5.1 Sampler	Gaseous Phase Hydrocarbon Primarily C ₃ -C ₈	4.44 lb
Sulfur Compounds as H ₂ S	Primarily H ₂ S	8.18 lb

^{*} This organic portion of the SCAQMD Method 5.1 sample meets both the SCAQMD Rule 102 definitions for PM and VOC.

Test No: <u>06-249</u> -4- Date: <u>8/2 & 8/2006</u>

RESULTS CONTINUED

Table 3 SCAQMD Rules (Steaming) Flow Rate 9.40 dscmm (332 dscfm) Process Rate 30,300 kg/hr (66,900 lb/hr)

Contaminant	Measured	Allowed	Applicable Rule
Particulate Matter (PM)			
Concentration (Total PM)	560 mg/dscm (0.244 gr/dscf)	450 mg/dscm (0.196 gr/dscf)	404(a)
Mass Rate (Solid PM)	0.30 kg/hr (0.66) lb/hr	7.04 kg/hr (15.5) lb/hr	405(a)
Sulfur Compounds as H ₂ S	0.07 ppm	500 ppm	407(a)(2)(A)

Table 4
Mass Emissions Per Single Drum Steaming Event

Contaminant	Physical Description of Sample	Measured
Solid PM from SCAQMD Method 5.1	Solid Fine Material with Coke Dust Appearance	0.080 lb
Condensable Organic PM/VOC* from SCAQMD Method 5.1	Liquid Hydrocarbon	0.0043 lb
Gaseous VOC as Hexane from Canister Following SCAQMD Method 5.1 Sampler	Gaseous Phase Hydrocarbon Primarily C ₃ -C ₈	0.00097 lb
Sulfur Compounds as H ₂ S	Primarily H ₂ S	0.00002 lb

^{*} This organic portion of the SCAQMD Method 5.1 sample meets both the SCAQMD Rule 102 definitions for PM and VOC.

Test No: <u>06-249</u> -5- Date: <u>8/2 & 8/2006</u>

RESULTS CONTINUED

Table 5
Speciated Gaseous Emissions (Blowdown)
Flow Rate 3.68 dscmm (130 dscfm)

	ate <u>3.68</u> ascmm (
Contaminant	Tank 54180	Tank P4M3	Average
VOC			
-Concentration as C (ppm)	10000	9840	9920
-Mass Rate (lb/hr)	2.94	2.90	2.92
Methane			
-Concentration (percent)	34.6	31.5	33.0
-Mass Rate (lb/hr)	0.01	0.01	0.01
Ethane			
-Concentration (ppmC)	29800	27300	28550
-Mass Rate (lb/hr)	9.19	8.43	8.81
C ₃			
-Concentration (ppm)	470	464	467
-Mass Rate (lb/hr)	0.43	0.42	0.42
C ₄			
-Concentration (ppm)	68.4	67.8	68.1
-Mass Rate (lb/hr)	0.08	0.08	0.08
C ₅			
-Concentration (ppm)	32.3	31.3	31.8
-Mass Rate (lb/hr)	0.05	0.05	0.05
$\overline{C_6}$			
-Concentration (ppm)	14.4	13.4	13.9
-Mass Rate (lb/hr)	0.03	0.02	0.02
C_7			
-Concentration (ppm)	328	341	334
-Mass Rate (lb/hr)	0.67	0.70	0.69
$\overline{\mathrm{C_8}}$			
-Concentration (ppm)	399	418	408
-Mass Rate (lb/hr)	0.94	0.98	0.96

Test No: <u>06-249</u> -6- Date: <u>8/2 & 8/2006</u>

RESULTS CONTINUED

Table 5 Continued Speciated Gaseous Emissions (Blowdown) Flow Rate 3.68 dscmm (130 dscfm)

Contaminant	Tank 54180	Tank P4M3	Average
C ₉₋₁₂			
-Concentration (ppm)	242	253	247
-Mass Rate (lb/hr)	0.74	0.78	0.76
Benzene			
-Concentration (ppm)	379	393	386
-Mass Rate (lb/hr)	0.61	0.63	0.62
Toluene			
-Concentration (ppm)	461	481	471
-Mass Rate (lb/hr)	0.87	0.91	0.89
Ethyl Benzene			
-Concentration (ppm)	14.8	12.7	13.8
-Mass Rate (lb/hr)	0.03	0.03	0.03
m+p-Xylene			
-Concentration (ppm)	171	177	174
-Mass Rate (lb/hr)	0.37	0.39	0.38
o-Xylene			
-Concentration (ppm)	22.1	18.7	20.4
-Mass Rate (lb/hr)	0.05	0.04	0.04
CO			
-Concentration (ppm)	1080	978	1029
-Mass Rate (lb/hr)	0.62	0.56	0.59

Test No: <u>06-249</u> -7- Date: <u>8/2 & 8/2006</u>

RESULTS CONTINUED

Table 6
Speciated Gaseous Emissions (Steaming)
Flow Rate 9.40 dscmm (332 dscfm)

	l I	
Tank 54154	Tank 54209	Average
12	9	10.5
0.009	0.008	0.008
8	4	6
0.007	0.003	0.005
2	<1	<1.5
0.002	< 0.001	< 0.001
0.4	0.2	0.3
		0.0007
0.0000	0.0004	0.0007
0.3	<0.1	<0.2
0.001	< 0.0003	< 0.0006
0.2	0.1	0.15
		0.15
0.001	0.0003	0.0006
0.2	0.2	0.2
		0.0009
	0,002	0,000
0.3	0.2	0.25
0.002	0.001	0.001
0.3	0.2	0.25
0.002	0.001	0.001
	0.009 8 0.007 2 0.002 0.4 0.0008 0.3 0.001 0.2 0.001 0.2 0.001 0.3 0.002	0.009 0.008 8 4 0.007 0.003 2 <1

Test No: <u>06-249</u> -8- Date: <u>8/2 & 8/2006</u>

RESULTS CONTINUED

Table 6 Continued Speciated Gaseous Emissions (Steaming) Flow Rate 9.40 dscmm (332 dscfm)

Flow Rate 9.40 dschill (552 dschill)					
Contaminant	Tank 54154	Tank 54209	Average		
C ₉₋₁₂					
-Concentration (ppm)	1.0	0.4	0.7		
-Mass Rate (lb/hr)	0.008	0.003	0.005		
Benzene					
-Concentration (ppm)	<0.1	<0.1	<0.1		
-Mass Rate (lb/hr)	< 0.0004	< 0.0004	< 0.0004		
Toluene					
-Concentration (ppm)	<0.1	<0.1	<0.1		
-Mass Rate (lb/hr)	< 0.0005	< 0.0004	< 0.0005		
Ethyl Benzene					
-Concentration (ppm)	<0.1	<0.1	<0.1		
-Mass Rate (lb/hr)	< 0.0006	< 0.0006	< 0.0005		
m+p-Xylene					
-Concentration (ppm)	<0.1	<0.1	<0.1		
-Mass Rate (lb/hr)	< 0.0006	< 0.0006	< 0.0006		
o-Xylene					
-Concentration (ppm)	<0.1	<0.1	<0.1		
-Mass Rate (lb/hr)	< 0.0006	< 0.0006	< 0.0006		
CO					
-Concentration (ppm)	2	<1	<1.5		
-Mass Rate (lb/hr)	0.003	< 0.001	< 0.002		

Test No: <u>06-249</u> -9- Date: <u>8/2 & 8/2006</u>

INTRODUCTION

On August 2 & 8, 2006, personnel from the South Coast Air Quality Management District (SCAQMD) Source Test Engineering Branch conducted testing at the BP/ARCO Refinery in Carson. The purpose of the test was to measure the VOC, speciated hydrocarbon, aromatic hydrocarbon, particulate matter, and sulfur compound emissions at the exhaust steam vent following the steaming and blow down stages of the coking process from coke drum numbers 3 and 2 respectively. The volumetric flow rate was also determined so that the measured concentrations could be reported in terms of mass emission rates. The testing was requested by the SCAQMD Planning and Rule Development Division for purposes of collecting coker unit emissions information for potential rule development.

Test No: <u>06-249</u> -10- Date: <u>8/2 & 8/2006</u>

EQUIPMENT AND PROCESS DESCRIPTION

BP/ARCO has 6 delayed cokers at its Carson refinery. Each drum is approximately 21 feet in diameter and 73 feet in height. The coker drums are containers which allow the resid feed material (bottoms product of the crude unit) sufficient residence time to crack thermally and produce coke and other products. In addition to resid, other feeds including sludge, oily wastes, etc. are processed in cokers. Figure 1 diagrams the delayed coker process flow.

Resid feed (~ 400 °F) is combined with the main fractionation (combination) tower products. The fractionation tower products transfer heat to the resid feed, raising temperatures by 100-150 °F. The combined effluent cools slightly, condensing the heaviest components, while the lighter products rise up in the tower. The heavy feed combined with the effluent recycle leave the bottom of the fractionation tower, are mixed with steam, pass through a furnace, and flow into the bottom of an emptied coke drum. The steam ensures that the feed velocity remains high while moving through the furnace, and minimizes any coking occurring in the furnace. The feed temperature exiting the furnace is 910-930 °F; the pressure is 30 - 60 psig.

The coke feed resides in the drum under high temperature as the reactions continue. During the coking process, hydrocarbon molecules "crack" into smaller molecules which rise and leave the top of the coke drum as vapors. The material left behind condenses and polymerizes to solid coke. More feed and steam is forced through the solidifying coke, creating pores in the structure, and giving the coke a sponge-like appearance. When the coke level rises to the fill point, the feed is directed to a second drum.

Hydrocarbon vapors leaving the coke drum flow to the fractionator tower, with the heaviest components being recycled. Recycle rates vary from 5 to 50% depending on how much coke is desired. A minimum recycle is required to minimize contamination of the heavy gas oil with coke fines and heavier materials. Products from the coker include naphtha (light and heavy), light gas oil, heavy gas oil and sometimes kerosene.

Following around 18 hours of coking, the drum is steamed for an hour to convert any remaining wet resid to coke. Next, cooling (quench) water is injected into the bottom of the drum. The cooling water carries any entrained hydrocarbons through the drum as it turns to steam, and cools the drum down gradually. During the blowdown period, the cooling water is drained, and the coke drum is depressurized (steam released) before the heads are taken off the top and bottom of the drum. Source testing was performed during the depressurization stage at the steam vent.

Coke is removed from the drum using a stream of high pressure (1000-2000 psi) water. The water flows down a drill stem into a cutter head, which directs high pressure water in a downwards spiraling manner. After drilling a pilot hole through the center, the water pressure is directed sideways, breaking the coke into chunks. The coke chunks fall through the pilot hole into a coke storage pit, or directly into a crusher car. The crusher car breaks larger pieces of coke

Test No: <u>06-249</u> -11- Date: <u>8/2 & 8/2006</u>

into more manageable pieces. The coke is transferred/conveyed into enclosed storage piles or loaded onto railroad cars.

A typical delayed coker drum cycle consists of 16-18 hours of coking, followed by the coke removal process. Following coke removal, the head is replaced, the system is purged of air using steam while also re-heating the drum in preparation for the next batch. Source testing was also performed during this steaming stage at the steam vent. This post coke removal portion of the process can take approximately 5 hours.

Source Test Operating Conditions Drum #2:

Coke Production: 535 ton/batch (16-hour cycle)

Blow Down Time: 1 ½ hr
Drum Pressure During Blowdown: 0.89 psig
Drum Outage (Fill Distance from Top): 34 ft
Feed Temperature @ end of test: 211° F
Exit Temperature @ end of test: 151° F

Drum Size: 21 ft - 6 in diameter x 73 ft height

Source Test Operating Conditions Drum #3:

Coke Production: 535 ton/batch (16-hour cycle)

Steaming Time: 7 min 20 sec
Drum Pressure During Steaming: 0.1 psig
Drum Outage (Fill Distance from Top): 33 ft
Feed Temperature @ end of test: 93° F
Exit Temperature @ end of test: 212° F

Drum Size: 21 ft - 6 in diameter x 73 ft height

For more process information, please refer to the BP/ARCO letter in the Appendix.

Test No: <u>06-249</u> -12- Date: <u>8/2 & 8/2006</u>

SAMPLING AND ANALYTICAL PROCEDURES

Gas Flow Rate

The exhaust gas velocity was measured using a Standard type Pitot tube with a differential pressure manometer. The temperature was measured using a type "K" thermocouple with a digital potentiometer. The exhaust flow rate was calculated from the average gas velocity and duct cross-sectional area. The flow rate was corrected to dry standard conditions based on the gas stream moisture content (SCAQMD Method 4.1 weight gain from the particulate train), temperature and barometric pressure. The port location was at least one half stack diameter upstream and greater than eight duct diameters downstream from any flow disturbances along the ten inch diameter horizontal exhaust duct. For the Blowdown test, the emissions continued after the sampling was completed. To incorporate the post sampling emissions, a reference point velocity was taken at 5 minute intervals after the sampling was completed. Since the reference point during the traverse (157 ft/min) was similar to the post sampling average velocity (150 ft/min), it was assumed that the emissions continued at the same rate for the entire venting period.

Particulate Sampling

SCAQMD Method 5.1 train was used, modified (Figure 2) by the addition of a cooling coil (in an ice bath) following the probe and followed by the addition of five empty bubblers (Greenberg-Smith impingers with tips replaced with a 1.3 cm id. glass tube extending to about 1.3 cm from the bottom of each flask). The remainder of the sample train was arranged in accordance with Method 5.1 which included the stainless steel nozzle and probe, two impingers, each filled with 100 ml of deionized water, an empty bubbler, fiberglass filter, and a bubbler filled with tared silica gel. The modified train was connected to a leak-free vacuum pump, dry gas meter, and calibrated orifice. The impingers were contained in an ice bath to condense water vapor and other condensable matter contained in the sample stream.

<u>Integrated Gas Sampling – Total Gaseous Non-Methane Non-Ethane Organics and Sulfur</u> Compounds

Duplicate canisters (6L) were used to collect exhaust stream gas samples. The gas was sampled from a slip stream off the modified Method 5.1 train, located after the fiberglass filter but before the silica gel bubbler (Figure 2). SCAQMD's laboratory analyzed the collected samples for carbon monoxide, carbon dioxide, ethane, and non-methane non-ethane organic compounds (NMNEOC) using SCAQMD Method 25.1 (TCA FID, no trap). Hydrocarbon speciation, benzene, toluene and xylene analyses were done by cryo-GC FID. Additionally a Method 10.1 (GC TCD) analysis was performed to determine the concentrations of hydrogen, nitrogen, methane and oxygen.

Test No: <u>06-249</u> -13- Date: <u>8/2 & 8/2006</u>

A second type of integrated gas sample was also collected continuously from a slip stream off the modified Method 5.1 train, located after the fiberglass filter but before the silica gel bubbler (Figure 2). The gas sampling apparatus consisted of a stainless steel probe, peristaltic pump, and Tedlar gas sampling bag. The sampled gas was analyzed for sulfur compounds by SCAQMD Method 307-91, SCD350A, Capillary Column, Flameless Interface.

Test No: <u>06-249</u> -14- Date: <u>8/2 & 8/2006</u>

Figure 1
Delayed Coker Flow Diagram

Test No: <u>06-249</u> -15- Date: <u>8/2 & 8/2006</u>

Figure 2
Sampling Set-up

Test No: <u>06-249</u> -16- Date: <u>8/2 & 8/2006</u>

TEST CRITIQUE

Particulate matter testing deviated from the minimum sample volume requirement of SCAQMD Method 5.1. The steaming cycle lasted for seven minutes, and the blowdown cycle lasted for ninety-one minutes. Of the 12.07 cubic feet of total volume sampled during steaming, 2.961 cubic feet (2.842 dscf) consisted of dry gas. 75.46 percent of the volume sampled was moisture. Of the 27 cubic feet of total volume sampled during blowdown, 0.619 cubic feet (0.589 dscf) consisted of dry gas. 97.71 percent of the volume sampled was moisture. The wet volumes did not meet the minimum 30 cubic feet (corrected to standard conditions) required for a Method 5.1 test. This deviation is thought to have a negligible impact on the testing since the intent of a minimum sample volume is the collection of detectable quantities of particulate matter. The amounts of PM collected were well over the minimum quantity needed (approximately 5 mg) to be considered as detectable quantities of PM.

The results indicate that sulfur compound emissions exceeded the 500 ppm limit of SCAQMD rule 407(a)(2)(A) during the blowndown cycle.

The results indicate that particulate matter emissions exceeded the grain loading limits established under SCAQMD Rule 404 (a). According to Table 404(a), for a discharge volume of 883 dscfm or less, the maximum concentration of particulate matter allowed in the discharge gas (calculated as dry gas at standard conditions) is 0.196 gr/dscf. Test results show that the discharge volumes were 130 dscfm, with a particulate matter concentration of 2.63 gr/dscf for blowdown, and 332 dscfm, with a particulate matter concentration of 0.244 gr/dscf for steaming in the discharge gas. Although the test results should not be used for compliance purposes due to deviations from the test methods, the magnitude of exceedance for the blowdown test indicates there is credibility to the assertion that Rule 404 was violated.

The source testing for emissions from the coke drum was complicated by the high moisture content of the vented emissions and the inability to capture emissions during all steps of the batch process. Although the emissions are reported, the reported emissions reflect an inherent low bias due to these difficulties in conducting the source testing. As such, the emissions should be considered as greater than that reported. Furthermore, it can be assured that despite the discrepancies in the testing in terms of adherence to the test method requirements, the emissions are at least that which was reported.

The following are more specific explanations of the sources of low bias:

1. After the blow down period, the top drum head is removed and continues to remain open for a period of time longer than the vent period to allow further cooling. After cooling, the coke is cut from the drum. It was observed that emissions occurred during these events as indicated by a visible steam. These emissions were not tested nor included in the **Results** section of this report. Based on observation of these plumes, these emissions may be significant.

Test No: <u>06-249</u> -17- Date: <u>8/2 & 8/2006</u>

2. A sample for sulfur was taken and analyzed. The sample was taken after the Method 5.1 train, which would have knocked out the soluble sulfur compounds including hydrogen sulfide. This loss was confirmed by the presence of soluble sulfates in the Method 5.1 sample.

Test No: <u>06-249</u> -18- Date: <u>8/2 & 8/2006</u>

CALCULATIONS

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 E. Copley Dr. Diamond Bar, California 91765-4182

			BP/ARCO	Test Date:		
		SOU	RCE TEST (CALCULATIONS		
	on: Coker Drum #3 (S 7				C. Willough	
Sample Train	,			mpat by.	O. Willough	Бу
SUMMARY	and Malania				44.50	•
-	-					•
	•		•	ers)		aeg F
						"H ₂ 0
0						
	Diameter		inch	M. Pitot Correction Factor		
	Sect. Area			N. Sampling Time		
-	k Temp		deg F	O. Nozzle X-Sect. Area		
	essure		"HgA	P. Net Sample Collection		-
	essure (I+(D/13.6))		"HgA	Q. Net Solid Collection		_
	re			R. Water Vapor Condensed		
	ressure (I+(K/13.6))		"HgA	S. Gas Volume Metered	2.961	dct
				L) + (435 torr/760 torr x 6 L x 0.0353 cf/L))	0.040	
i. Corrected Gas	s volume [(S x J/29.92	2) X 520/(460	+в) х С		2.842	ascr
PERCENT MOIS	STURE/GAS DENSIT	Y				
L D (W)		L (/4.04 D)	\//\0.0404	D) - T)	75.40	0/
	er vanor in Gas Samn	ie ((4.64 x R	1///// (1) (1) 41 h 4 Y		75.46	%
J. Percent wate	or vapor in Oas Camp	(()/((0.0+0+ X	R) + T))	70.40	
		(()/((0.0404 X	15) + 1))	70.40	
	lecular Weight (Wet):	(()/((0.0404 X	(1)	70.40	
V. Average Mol	lecular Weight (Wet):	ol. Fract.				/Mole
V. Average Mol	lecular Weight (Wet):	′ol. Fract. >	Moist. F	ract. x Molecular Wt.	= Wt	
V. Average Mol Component Water	lecular Weight (Wet): V0.755	ol. Fract. >	Moist. F	ract. x Molecular Wt.	= Wt 13.58	
V. Average Mol Component Water Carbon Dioxide	lecular Weight (Wet): V 0.755 0.0006	ol. Fract. >	Moist. F. 1.000 0.245	ract. x Molecular Wt. 	= Wt 13.58 0.01	
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid	Vecular Weight (Wet): 0.755 0.0006 0.0000	ol. Fract.	Moist. F	ract. x Molecular Wt. 18.0 , 44.0 , 28.0 ,	= Wt 13.58 0.01 0.00	
/. Average Mol Component Vater Carbon Dioxide Carbon Monoxid Dxygen	Vecular Weight (Wet): 0.755 0.0006 0.2050	Ol. Fract.	Moist. F 1.000 0.245 0.245 0.245	Tract. x Molecular Wt. 18.0 , 44.0 , 28.0 , 32.0 ,	= W1 13.58 0.01 0.00 1.61	
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Dxygen	Vecular Weight (Wet): 0.755 0.0006 0.2050	ol. Fract.	Moist. F	Tract. x Molecular Wt. 18.0 , 44.0 , 28.0 , 32.0 ,	= Wt 13.58 0.01 0.00	
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen	Vecular Weight (Wet): 0.755 0.0006 0.2050	Ol. Fract.	Moist. F 1.000 0.245 0.245 0.245	Tract. x Molecular Wt. 18.0 , 44.0 , 28.0 , 32.0 ,	= W1 13.58 0.01 0.00 1.61	
V. Average Mol	Vecular Weight (Wet): 0.755 0.0006 0.2050	Ol. Fract.	Moist. F 1.000 0.245 0.245 0.245	Tract. x Molecular Wt. 18.0 , 44.0 , 28.0 , 32.0 , 28.2 ,	= W1 13.58 0.01 0.00 1.61 5.50	
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts	0.755 0.0006 le 0.2050 s 0.794	ol. Fract.	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt 13.58 0.01 0.00 1.61 5.50 20.70	
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts FLOW RATE W. Gas Density	0.755 0.0006 le 0.0000 0.2050 s 0.794	ol. Fract.	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt 13.58 0.01 0.00 1.61 5.50 20.70	
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts FLOW RATE W. Gas Density K. Velocity Pres	0.755 0.0006 e 0.2050 s 0.794 Correction Factor (28 sure Correction Factor	ol. Fract.	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt	./Mole
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts FLOW RATE W. Gas Density K. Velocity Pres Y. Corrected Ve	0.755 0.0006 0.2050 0.794 Correction Factor (28 sure Correction Factor later to the colority (A x M x W x X)	ol. Fract.	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt	fps
/. Average Mol Component Vater Carbon Dioxide Carbon Monoxid Dxygen Nitrogen & Inerts FLOW RATE W. Gas Density K. Velocity Pres Y. Corrected Ve Z. Flow Rate (Y	0.755 0.0006 le 0.0000 0.2050 s 0.794 Correction Factor (28 sure Correction Factor sure Correction Factor (28 sure Correction Fa	ol. Fract.	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt 13.58 0.01 0.00 1.61 5.50 20.70 1.18 1.00 52.05 1703	fps cfm
Component Component Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts CACON RATE V. Gas Density C. Velocity Pres C. Corrected Ve C. Flow Rate (Y	O.755 0.0006 le 0.0000 0.2050 s 0.794 Correction Factor (28 sure Correction Factor Factor Factor (28 sure Correction Factor (28	ol. Fract.) Dry Basis Dry Basis Dry Basis Dry Basis Dry Basis r (29.92/L)^.5	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt 13.58 0.01 0.00 1.61 5.50 20.70 1.18 1.00 52.05 1703 1353	fps cfm scfm
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts V. Gas Density V. Velocity Pres V. Corrected Ve C. Flow Rate (Y AA. Flow Rate (S	O.755 0.0006 le 0.0000 0.2050 s 0.794 Correction Factor (28 sure Correction Factor Factor Factor (28 sure Correction Factor (28	ol. Fract.) Dry Basis Dry Basis Dry Basis Dry Basis Dry Basis r (29.92/L)^.5	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt 13.58 0.01 0.00 1.61 5.50 20.70 1.18 1.00 52.05 1703 1353	fps cfm
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts FLOW RATE W. Gas Density X. Velocity Pres Y. Corrected Ve Z. Flow Rate (Y AA. Flow Rate (S BB. Dry Flow Ra	O.755 0.0006 le 0.0000 0.2050 s 0.794 Correction Factor (28 sure Correction Factor Factor Factor (28 sure Correction Factor (28	ol. Fract.) Tol. Fract.) Tol	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt 13.58 0.01 0.00 1.61 5.50 20.70 1.18 1.00 52.05 1703 1353	fps cfm scfm
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts FLOW RATE W. Gas Density X. Velocity Pres Y. Corrected Ve Z. Flow Rate (Y AA. Flow Rate (S BB. Dry Flow Ra	0.755 0.0006 0.2050 0.794 Correction Factor (28 sure Correction Factor Factor (28 sure Correction Factor (28 sure Correction Factor) (28 x G x 60)	ol. Fract. of Dry Basis Of 29.92/L)^5.	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt 13.58 0.01 0.00 1.61 5.50 20.70 1.18 1.00 52.05 1703 1353 332	fps cfm scfm dscfm
V. Average Mol Component Water Carbon Dioxide Carbon Monoxid Oxygen Nitrogen & Inerts V. Gas Density V. Velocity Pres V. Corrected Ve Z. Flow Rate (Y AA. Flow Rate (S BB. Dry Flow Ra SAMPLE CONC	Correction Factor (28 sure Correction Factor (28 sure Correction Factor (27 x G x 60)	Ol. Fract.	1.000 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt	fps cfm scfm dscfm
Component Component Carbon Dioxide Carbon Monoxid Dxygen Nitrogen & Inerts Carbon Monoxid Dxygen Valocity Pres Corrected Ve Corrected Ve Corrected Ve AA. Flow Rate (S BB. Dry Flow Rate CCC. Sample Cor CCC.	Correction Factor (28 sure Correction Factor Factor (27 x G x G) (1-2) (ol. Fract. of Dry Basis Dr	1.000 0.245 0.245 0.245 0.245	Tract. x Molecular Wt. 18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt	fps cfm scfm dscfm
/. Average Mol Component	Correction Factor (28 sure Correction Factor Electory (A x M x W x X) x G x 60)	Ol. Fract.) Dry Basis Dry Basis Dry Basis Dry Basis Dry Basis C/29.92/L)^.5 C/200 RATE (P/T)]	1.000 0.245 0.245 0.245 0.245 0.245	18.0 , 44.0 , 28.0 , 32.0 , 28.2 , Sum	= Wt	fps cfm scfm dscfm

Test No: <u>06-249</u> -19- Date: <u>8/2 & 8/2006</u>

		1
	0	mg
	0	mg
	0	mg
	0	mg
	0	mg
	0	mg
	42.6	mg
	0	mg
	53.8	mg
	2.3	mg
3* + C - D* + E - F* +	G) 44.9	mg
* - D* - G)	42.6	mg
(2)		
k	- D* - G)	0 0 0 0 0 42.6 0 53.8 3* + C - D* + E - F* + G) 44.9

Test No: <u>06-249</u> -20- Date: <u>8/2 & 8/2006</u>

	Velocity		Calculated	
Traverse	Head #1	Temp.	Velocity	
Point #	("H ₂ O)	(°F)	(fps)	
1	0.880	175	68.55	
2	0.730	178	62.58	
3	0.660	185	59.83	
4	0.600	192	57.36	
5	0.590	194	56.97	
6 7	0.530	199	54.20	
	0.470	200	51.08	
8	0.420	200	48.28	
9	0.680	205	61.67	
10	0.220	208	35.16	
11	0.120	210	26.00	
12	0.080	210	21.23	
13	0.020	213	10.64	
14	0.020	213	10.64	
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
	0.430	198.7	44.59	
Average Te	emperature	(°F) -	199	Average Velocity (fps) - 44.59

Test No: <u>06-249</u> -21- Date: <u>8/2 & 8/2006</u>

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 E. Copley Dr. Diamond Bar, California 91765-4182

	t No. 06-0249 		BP/ARCO			Test Date:		
		SOU	RCE TEST		IONS			
Sampling Location: Cample Trail	Coker Drum #2 (Blow 18						C. Willough	
SUMMARY								
	Velocity							•
•	erature (Use 60 deg.F			,				deg F
	ction Factor							"
•	ressure							"H ₂ 0
. Nozzie Diameter							0.1420	ITICIT
F. Stack Inside Diam	neter	10	inch	M. Pitot Co	orrection Fac	tor	0.99	
G. Stack Cross Sect.	. Area	0.545	ft2	N. Samplin	ng Time		. 24	min
I. Average Stack Te	emp	217.4	deg F			l		ft
. Barometric Pressu	re	29.75	"HgA	P. Net San	nple Collecti	on	100.4	mg
. Gas Meter Pressu	re (I+(D/13.6))	29.75	"HgA					mg
C. Static Pressure		0.000				nsed		
Total Stack Pressi		29.75	U			d	0.619	dcf
•	(7.52 L x 0.0353 cf/L) + (552 to					**	c ====	
. Corrected Gas Vo	olume [(S x J/29.92) x	520/(46	υ+Β) x C				0.589	asct
PERCENT MOISTUI	RE/GAS DENSITY							
J. Percent Water Va	apor in Gas Sample	((4.64 x F	R)/((0.0464 x	(R) + T))			97.71	%
/. Average Molecul	lar Weight (Wet):							
-		ract. x	Moist. F	ract. x	. Molec	cular Wt.	= W	t./Mole
Component		ract. x	Moist. F	ract. x 	. Molec		= W ¹ 17.59	t./Mole
Component Vater	Vol. F			ract. x 		,		t./Mole
Component Vater Carbon Dioxide	Vol. F 0.9771 0.0091 Dry 0.0010 Dry	/ Basis / Basis	1.000 0.023 0.023	ract. x 	18.0 44.0 28.0	,	 17.59	t./Mole
Component Vater Carbon Dioxide Carbon Monoxide Oxygen	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry	/ Basis / Basis / Basis	1.000 0.023 0.023 0.023	ract. x	18.0 44.0 28.0 32.0	,	17.59 0.01 0.00 0.05	t./Mole
ComponentVater Carbon Dioxide Carbon Monoxide Oxygen Hydrogen	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry	/ Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023	ract. x 	18.0 44.0 28.0 32.0 2.0	, , ,	17.59 0.01 0.00 0.05 0.01	t./Mole
Component Vater Carbon Dioxide Carbon Monoxide Dxygen Hydrogen Methane	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry	/ Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023	ract. x 	18.0 44.0 28.0 32.0 2.0	, , , ,	17.59 0.01 0.00 0.05 0.01 0.12	t./Mole
Component Water Carbon Dioxide Carbon Monoxide Dxygen Hydrogen Methane	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry	/ Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023	ract. x	18.0 44.0 28.0 32.0 2.0	, , , ,	17.59 0.01 0.00 0.05 0.01	t./Mole
Component Water Carbon Dioxide Carbon Monoxide Dxygen Hydrogen Methane	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry	/ Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023	ract. x	18.0 44.0 28.0 32.0 2.0	, , , ,	17.59 0.01 0.00 0.05 0.01 0.12	t./Mole
Component Water Carbon Dioxide Carbon Monoxide Oxygen Hydrogen Methane Nitrogen & Inerts	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry	/ Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023	ract. x	18.0 44.0 28.0 32.0 2.0	, , , , , , , , , , , , , , , , , , , ,	17.59 0.01 0.00 0.05 0.01 0.12 0.20	t./Mole
Component Water Carbon Dioxide Carbon Monoxide Dxygen Hydrogen Methane Nitrogen & Inerts	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry	/ Basis / Basis / Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20	t./Mole
Component	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry	/ Basis / Basis / Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99	t./Mole
Component Vater Carbon Dioxide Carbon Monoxide Dxygen Hydrogen Methane Hitrogen & Inerts FLOW RATE V. Gas Density Cor	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry	/ Basis / Basis / Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99	
Component Vater Carbon Dioxide Carbon Monoxide Dixygen Hydrogen Methane Mitrogen & Inerts FLOW RATE V. Gas Density Cor C. Velocity Pressure C. Corrected Velocit C. Flow Rate (Y x G	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry rection Factor (28.95	/ Basis / Basis / Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99 1.27 1.00 227.18 7434	fps
Component Vater Carbon Dioxide Carbon Monoxide Dioxygen Mydrogen Methane Mitrogen & Inerts CLOW RATE V. Gas Density Cor C. Velocity Pressure C. Corrected Velocit C. Flow Rate (Y x G	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry 0.3179 Dry rection Factor (28.95	/ Basis / Basis / Basis / Basis / Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99 1.27 1.00 227.18 7434 5675	fps cfm scfm
Component Vater Carbon Dioxide Carbon Monoxide Daygen Hydrogen Methane Hitrogen & Inerts CLOW RATE V. Gas Density Cor C. Velocity Pressure C. Corrected Velocit C. Flow Rate (Y x G	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry rection Factor (28.95	/ Basis / Basis / Basis / Basis / Basis / Basis / Basis / Basis / Basis	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99 1.27 1.00 227.18 7434 5675	fps
Component	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry 0.3179 Dry rection Factor (28.95	/ Basis / Colored Colo	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99 1.27 1.00 227.18 7434 5675	fps cfm scfm
Component Vater Carbon Dioxide Carbon Monoxide Oxygen Hydrogen Methane Nitrogen & Inerts FLOW RATE V. Gas Density Cor C. Velocity Pressure C. Corrected Velocit C. Flow Rate (Y x G AA. Flow Rate (Standard SAMPLE CONCENT	7 (28.95) Trection Factor (28.95) O (2715) O (3305) O (3179) O (3179)	/ Basis / Compared to the comp	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99 1.27 1.00 227.18 7434 5675 130	fps cfm scfm dscfm
Component Vater Carbon Dioxide Carbon Monoxide Oxygen Hydrogen Methane Mitrogen & Inerts CLOW RATE V. Gas Density Cor C. Velocity Pressure C. Corrected Velocit C. Flow Rate (Y x G A. Flow Rate (Y x G A. Flow Rate (Standard SA) BB. Dry Flow Rate (A) CAMPLE CONCENT CC. Sample Concen	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry 0.3179 Dry 0.4 x M x W x X) x 60)	/ Basis / Compared to the comp	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , , , , Sum	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99 1.27 1.00 227.18 7434 5675 130	fps cfm scfm dscfm
Component Vater Carbon Dioxide Carbon Monoxide Oxygen Hydrogen Methane Litrogen & Inerts CLOW RATE V. Gas Density Cor C. Velocity Pressure C. Corrected Velocit C. Flow Rate (Y x G A. Flow Rate (Y x G A. Flow Rate (Standard SA) B. Dry Flow Rate (A) CAMPLE CONCENT CC. Sample Concen DD. Sample Concen	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.0700 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry 0.3179 Dry 0.4 x M x W x X) x 60)	/ Basis / Basi	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , , , , , , , , , , , , , , ,	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99 1.27 1.00 227.18 7434 5675 130 2.629	fps cfm scfm dscfm
Component Vater Carbon Dioxide Carbon Monoxide Dxygen Hydrogen Methane Nitrogen & Inerts CLOW RATE V. Gas Density Cor C. Velocity Pressure C. Corrected Velocit C. Flow Rate (Y x G NA. Flow Rate (Standard) B. Dry Flow Rate (A B. Dry Flow Rate (A B. Concent CC. Sample Emissio	Vol. F 0.9771 0.0091 Dry 0.0010 Dry 0.2715 Dry 0.3305 Dry 0.3179 Dry 0.3179 Dry 0.4 x M x W x X) x 60)	/ Basis / Basi	1.000 0.023 0.023 0.023 0.023 0.023 0.023		18.0 44.0 28.0 32.0 2.0 16.0 28.2	, , , , , , , , , , , , , , , , , , ,	17.59 0.01 0.00 0.05 0.01 0.12 0.20 17.99 1.27 1.00 227.18 7434 5675 130 2.629 #DIV/0! 2.922	fps cfm scfm dscfm gr/dscf ppm lb/hr

Test No: <u>06-249</u> -22- Date: <u>8/2 & 8/2006</u>

Blowdown A. Probe Catch 0 mg				Ī		
B. (1) Probe Acid 0 mg	Blowdown					
(2) Probe Sulfate (2) Probe Sulfate (3) Probe Sulfate (4) Filter Catch (5) Filter Acid (6) Filter Sulfate (7) Filter Sulfate (8) Filter Sulfate (8) Filter Sulfate (9) Impinger Catch (1) Impinger Acid (2) Impinger Sulfate (3) Impinger Sulfate (4) Impinger Organic (5) Impinger Organic (6) Impinger Organic (7) Impinger Organic (8) Impinger Organic (9) Impinger Organic (10) Impinger Organic	A. Probe Catch				0	mg
C. Filter Catch D. (1) Filter Acid (2) Filter Sulfate E. Impinger Catch F. (1) Impinger Acid (2) Impinger Sulfate G. Impinger Organic O mg 85.4 mg 0 mg 75.9 mg	B. (1) Probe Acid				0	mg
D. (1) Filter Acid 0 mg (2) Filter Sulfate 0 mg E. Impinger Catch 85.4 mg F. (1) Impinger Acid 0 mg (2) Impinger Sulfate 50.9 mg G. Impinger Organic 15 mg	(2) Probe Sulfate				0	mg
D. (1) Filter Acid 0 mg (2) Filter Sulfate 0 mg E. Impinger Catch 85.4 mg F. (1) Impinger Acid 0 mg (2) Impinger Sulfate 50.9 mg G. Impinger Organic 15 mg						
(2) Filter Sulfate (2) Filter Sulfate (3) Filter Sulfate (4) Impinger Catch (5) Impinger Acid (6) Impinger Organic (7) Filter Sulfate (8) Mg (8) Mg (9) Mg (1) Impinger Sulfate (1) Impinger Sulfate (1) Impinger Organic (1) Impinger Organic (2) Impinger Organic (3) Mg (4) Mg (5) Mg (6) Mg (7) Mg (8) Mg (8) Mg (9) Mg (9) Mg (10) Mg (11) Mg (12) Mg (13) Mg (14) Mg (15) Mg	C. Filter Catch				0	mg
E. Impinger Catch F. (1) Impinger Acid (2) Impinger Sulfate G. Impinger Organic 15 mg	D. (1) Filter Acid				0	mg
F. (1) Impinger Acid (2) Impinger Sulfate G. Impinger Organic 15 mg	(2) Filter Sulfate				0	mg
F. (1) Impinger Acid (2) Impinger Sulfate G. Impinger Organic 15 mg						
G. Impinger Organic 50.9 mg	E. Impinger Catch				85.4	mg
G. Impinger Organic 15 mg	F. (1) Impinger Acid				0	mg
	(2) Impinger Sulfate				50.9	mg
H. Total Particulate (A - B* + C - D* + E - F* + G) 100.4 mg	G. Impinger Organic				15	mg
H. Total Particulate (A - B* + C - D* + E - F* + G) 100.4 mg						
	H. Total Particulate (A	- B* + C - D)* + E - F* +	G)	100.4	mg
I. Solid Particulate (F - B* - D* - G)	I. Solid Particulate (F -	B* - D* - G)		85.4	mg
* Use Lower of (1) amd (2)	* Use Lower of (1) am	d (2)				

Test No: <u>06-249</u> -23- Date: <u>8/2 & 8/2006</u>

	Velocity		Calculated				
Traverse	Head #1	Temp.	Velocity				
Point #	("H ₂ O)	(°F)	(fps)				
1	8.500	223	220.96				
2	10.500	221	245.23				
3	7.300	215	203.57				
4	6.500	215	192.09				
5 6	5.500	215	176.70				
6	6.800	215	196.47				
7	5.500	215	176.70				
8	4.300	215	156.24				
9	7.000	218	199.78				
10	7.500	218	206.80				
11	7.500	220	207.10				
12	5.000	220	169.10				
13	4.300	222	157.05				
14	3.500	215	140.96				
15	3.000	216	130.60				
16	2.000	215	106.55				
17							
18							
19							
20							
21							
22							
23							
24							
	5.919	217.4	180.37				
Average Te	emperature	(°F) -	217	Averag	ge Velocity	(fps) -	180.37

Test No: <u>06-249</u> -24- Date: <u>8/2 & 8/2006</u>

MASS RATE CALCULATIONS (TANK No. 54180) {BLOWDOWN}

Pollutant	Concentration (ppm)	Mblecular Weight (lb/lb-mbl)	Flow Rate (dscfm)	Mass Rate (lb/hr)
NMNEOC, ppmC	10000	14.3	130	2.942797
Methane, ppm	34.6	16	130	0.011393
Ethane, ppmC	29800	15	130	9.198813
C _{3, ppm}	470	44	130	0.425574
C _{4, ppm}	68.4	58	130	0.081641
C _{5, ppm}	32.3	72	130	0.047859
C _{6, ppm}	14.4	86	130	0.025485
C _{7, ppm}	328	100	130	0.674991
C _{8, ppm}	399	114	130	0.936056
C ₉ -C _{12, ppm}	242	149	130	0.742038
Benzene, ppm	379	78	130	0.60836
Toluene, ppm	461	92	130	0.87280
m+p-Xylene, ppm	171	106	130	0.37301
o-Xylene, ppm	22.1	106	130	0.04821
Ethylbenzene, ppm	14.8	106	130	0.03228
CO, ppm	1080	28	130	0.62231
CO _{2, ppm}	9280	44	130	8.40282

Where: Mass Rate = 1.583 x 10⁻⁷ x MW x ppm x Flow Rate

Test No: <u>06-249</u> -25- Date: <u>8/2 & 8/2006</u>

MASS RATE CALCULATIONS (DUPLICATE RUN TANK NO. P4M3) {BLOWDOWN}

Pollutant	Concentration (ppm)	Mblecular Weight (lb/lb-mbl)	Flow Rate (dscfm)	Mass Rate (lb/hr)
NMNEOC, ppmC	9840	14.3	130	2.895712
Methane, ppm	31.5	16	130	0.010372
Ethane, ppmC	27300	15	130	8.427101
C _{3, ppm}	464	44	130	0.420141
C _{4, ppm}	67.8	58	130	0.080925
$C_{5, ppm}$	31.3	72	130	0.046377
C _{6, ppm}	13.4	86	130	0.023715
C _{7, ppm}	341	100	130	0.701744
C _{8, ppm}	418	114	130	0.980631
C ₉ -C _{12, ppm}	253	149	130	0.775767
Benzene, ppm	393	78	130	0.63083
Toluene, ppm	481	92	130	0.91066
m+p-Xylene, ppm	177	106	130	0.38610
o-Xylene, ppm	18.7	106	130	0.04079
Ethylbenzene, ppm	12.7	106	130	0.02770
CO, ppm	978	28	130	0.56354
CO _{2, ppm}	8890	44	130	8.04968

Where: Mass Rate = $1.583 \times 10^{-7} \times MW \times ppm \times Flow Rate$

Test No: <u>06-249</u> -26- Date: <u>8/2 & 8/2006</u>

MASS RATE CALCULATIONS (AVERAGE OF TANK NOS. 54180 & P4M3)

Pollutant	Concentration (ppm)	Mblecular Weight (lb/lb-mbl)	Flow Rate (dscfm)	Mass Rate (lb/hr)
NMNEOC, ppmC	9920	14.3	130	2.919255
Methane, ppm	33.05	16	130	0.010882
Ethane, ppmC	28550	15	130	8.812957
C _{3, ppm}	467	44	130	0.422857
$C_{4, ppm}$	68.1	58	130	0.081283
$C_{5, ppm}$	31.8	72	130	0.047118
C _{6, ppm}	13.9	86	130	0.024600
C _{7, ppm}	334.5	100	130	0.688368
C _{8, ppm}	408.5	114	130	0.958343
C ₉ -C _{12, ppm}	247.5	149	130	0.758902
Benzene, ppm	386	78	130	0.61959
Toluene, ppm	471	92	130	0.89173
m+p-Xylene, ppm	174	106	130	0.37956
o-Xylene, ppm	20.4	106	130	0.04450
Ethylbenzene, ppm	13.75	106	130	0.02999
CO, ppm	1029	28	130	0.59292
CO _{2, ppm}	9085	44	130	8.22625

Where: Mass Rate = $1.583 \times 10^{-7} \times MW \times ppm \times Flow Rate$

Test No: <u>06-249</u> -27- Date: <u>8/2 & 8/2006</u>

MASS RATE CALCULATIONS (TANK NO. 54154) {STEAMING}

Pollutant	Concentration (ppm)	Molecular Weight (lb/lb-mol)	Flow Rate (dscfm)	Mass Rate (lb/hr)
NMNEOC, ppmC	12	14.3	332	0.009019
Methane, ppm	8	16	332	0.006727
Ethane, ppmC	2	15	332	0.001577
C _{3, ppm}	0.4	44	332	0.000925
C _{4, ppm}	0.3	58	332	0.000914
C _{5, ppm}	0.2	72	332	0.000757
C _{6, ppm}	0.2	86	332	0.000904
C _{7, ppm}	0.3	100	332	0.001577
C _{8, ppm}	0.3	114	332	0.001797
C ₉ -C _{12, ppm}	1	149	332	0.007831
Benzene, ppm	0.1	78	332	0.00041
Toluene, ppm	0.1	92	332	0.00048
m+p-Xylene, ppm	0.1	106	332	0.00056
o-Xylene, ppm	0.1	106	332	0.00056
Ethylbenzene, ppm	0.1	106	332	0.00056
CO, ppm	2	28	332	0.00294
CO _{2, ppm}	641	44	332	1.48228

Where: Mass Rate = $1.583 \times 10^{-7} \times MW \times ppm \times Flow Rate$

Test No: <u>06-249</u> -28- Date: <u>8/2 & 8/2006</u>

MASS RATE CALCULATIONS (DUPLICATE RUN TANK No. 54209) {STEAMING}

Pollutant	Concentration (ppm)	Molecular Weight (lb/lb-mol)	Flow Rate (dscfm)	Mass Rate (lb/hr)
NM/NEOC, ppmC	9	14.3	332	0.006764
Methane, ppm	4	16	332	0.003364
Ethane, ppmC	1	15	332	0.000788
C _{3, ppm}	0.2	44	332	0.000462
C _{4, ppm}	0.1	58	332	0.000305
C _{5, ppm}	0.1	72	332	0.000378
C _{6, ppm}	0.2	86	332	0.000904
C _{7, ppm}	0.2	100	332	0.001051
C _{8, ppm}	0.2	114	332	0.001198
C ₉ -C _{12, ppm}	0.4	149	332	0.003132
Benzene, ppm	0.1	78	332	0.00041
Toluene, ppm	0.1	92	332	0.00048
m+p-Xylene, ppm	0.1	106	332	0.00056
o-Xylene, ppm	0.1	106	332	0.00056
Ethylbenzene, ppm	0.1	106	332	0.00056
CO, ppm	1	28	332	0.00147
CO _{2, ppm}	579	44	332	1.33891

Where: Mass Rate = 1.583 x 10⁻⁷ x MW x ppm x Flow Rate

Test No: <u>06-249</u> -29- Date: <u>8/2 & 8/2006</u>

MASS RATE CALCULATIONS (AVERAGE OF TANK NOS. 54154 & 54209)

Pollutant	Concentration (ppm)	Molecular Weight (lb/lb-mol)	Flow Rate (dscfm)	Mass Rate (lb/hr)
NM/NEOC, ppmC	10.5	14.3	332	0.007891
Methane, ppm	6	16	332	0.005045
Ethane, ppmC	1.5	15	332	0.001183
C _{3, ppm}	0.3	44	332	0.000694
C _{4, ppm}	0.2	58	332	0.000610
$C_{5, ppm}$	0.15	72	332	0.000568
$C_{6, ppm}$	0.2	86	332	0.000904
$C_{7, ppm}$	0.25	100	332	0.001314
$C_{8, ppm}$	0.25	114	332	0.001498
C ₉ -C _{12, ppm}	0.7	149	332	0.005482
Benzene, ppm	0.1	78	332	0.00041
Toluene, ppm	0.1	92	332	0.00048
m+p-Xylene, ppm	0.1	106	332	0.00056
o-Xylene, ppm	0.1	106	332	0.00056
Ethylbenzene, ppm	0.1	106	332	0.00056
CO, ppm	1.5	28	332	0.00221
CO _{2, ppm}	610	44	332	1.41059

Where: Mass Rate = $1.583 \times 10^{-7} \times MW \times ppm \times Flow Rate$

Test No: <u>06-249</u> -30- Date: <u>8/2 & 8/2006</u>

MASS RATE CALCULATIONS (TEDLAR BAG NO. 1) {BLOW DOWN}

Pollutant	Concentration* (ppm)	Molecular Weight (lb/lb-mol)	Flow Rate (dscfm)	Mass Rate* (lb/hr)
Hydrogen Sulfide	7680	34	130	5.374
Carbonyl Sulfide	18	60	130	0.022
Methyl Mercaptan	6	48	130	0.006
Ethyl Mercaptan	1	62	130	0.001
Dimethyl Sulfide	0.1	62	130	0.000
Isopropyl Mercaptan	0.1	76	130	0.000
n-Propyl Mercaptan	0.1	76	130	0.000
Unknown Sulfur	2.89	34	130	0.002
Total Sulfur*	7708	34	130	5.393

Where: Mass Rate = $1.583 \times 10^{-7} \times MW \times ppm \times Flow Rate$

 $^{{}^*}$ Reported as H_2S and as less than the values indicated

Test No: <u>06-249</u> -31- Date: <u>8/2 & 8/2006</u>

MASS RATE CALCULATIONS (TEDLAR BAG No. 2) {STEAMING}

Pollutant	Concentration* (ppb)	Molecular Weight (lb/lb-mol)	Flow Rate (dscfm)	Mass Rate* (lb/hr)
Hydrogen Sulfide	60.1	34	332	0.00010739
Carbonyl Sulfide	5.3	60	332	0.00001671
Methyl Mercaptan	1.1	48	332	0.0000277
Ethyl Mercaptan	1.3	62	332	0.00000424
Dimethyl Sulfide	0.1	62	332	0.00000033
Isopropyl Mercaptan	2.4	76	332	0.0000959
n-Propyl Mercaptan	0.1	76	332	0.00000040
Unknown Sulfur	0.1	34	332	0.0000018
Total Sulfur*	70.1	34	332	0.00012526

Where: Mass Rate = $1.583 \times 10^{-7} \times MW \times (ppb/1000) \times Flow Rate$

^{*}Reported as H₂S and as less than the values indicated

Test No: <u>06-249</u> -32- Date: <u>8/2 & 8/2006</u>

CALCULATIONS: MASS EMISSIONS PER SINGLE BLOWDOWN EVENT (TABLE No. 2)

• Solid PM by Method 5.1 = solid PM emission rate x emission time

= $2.485 \text{ lb/hr x } 91 \text{ minutes x } 1 \text{ hr} \div 60 \text{ minutes}$

= 3.77 lb

• Condensable Organic PM/VOC = (impinger catch insolubles + organic residue)

x (dry flow rate ÷ corrected gas volume)

x emission time

= (15) mg x 1 lb/(453.593 x 1000 mg)

 $x (130 dscfm \div 0.589 dscf)$

x 91 minutes

 $= 0.66 \, lb$

• Gaseous VOC as Hexane = concentration ppmv ÷ 10⁶ x dry flow rate

 \div 379.46 ft³/lbmol x 14.36 lb/lbmol

x emission time

= 9,920 ppmv ÷ 10^6 x 130 dscfm

 \div 379.46 ft³/lbmol x 14.36 lb/lbmol

x 91 minutes

= 4.44 lb

• Sulfur Compound as H_2S = mass emission rate x emission time

= 5.393 lb/hr x 91 minutes x 1 hr \div 60 minutes

= 8.18 lb

Test No: <u>06-249</u> -33- Date: <u>8/2 & 8/2006</u>

CALCULATIONS: MASS EMISSIONS PER SINGLE STEAMING EVENT (TABLE No. 4)

• Solid PM by Method 5.1 = solid PM emission rate x emission time

= 0.658 lb/hr x 7.33 minutes x 1 hr \div 60 minutes

= 0.080 lb

• Condensable Organic PM/VOC = (impinger catch insolubles + organic residue)

x (dry flow rate ÷ corrected gas volume)

x emission time

= (2.3) mg x 1 lb/(453.593 x 1000 mg)

 $x (332 dscfm \div 2.842 dscf)$

x 7.33 minutes

= 0.0043 lb

• Gaseous VOC as Hexane = concentration ppmv ÷ 10⁶ x dry flow rate

 \div 379.46 ft³/lbmol x 14.36 lb/lbmol

x emission time

= 10.5 ppmv \div 10^6 x 332 dscfm

 \div 379.46 ft³/lbmol x 14.36 lb/lbmol

x 7.33 minutes

= 0.00097 lb

• Sulfur Compound as H_2S = mass emission rate x emission time

 $= 0.000125 \text{ lb/hr} \times 7.33 \text{ minutes } \times 1 \text{ hr} \div 60 \text{ minutes}$

= 0.000015 lb

Test No: <u>06-249</u> -34- Date: <u>8/2 & 8/2006</u>

APPENDIX

FIELD DATA, FIELD NOTES, CALIBRATION, LABORATORY RESULTS